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An algorithm is presented for solution of linear and nonlinear nonsteady-state 
thermal conductivity problems with hybrid computation equipment. 

At the present time ever wider use is being made of hybrid (analog-digital) computer 
systems for processing of thermophysical data. In connection with this, there arises the 
problem of hybrid modeling of forward and converse thermal conductivity problems and the de- 
velopment of corresponding computation algorithms for use as problem solving tools. 

When analog and digital computation devices are used simultaneously, special attention 
must be given to the problem of rational division of the problem into "analog" and "digital" 
portions, as well as choice of the rate of data exchange between the components. These prob- 
lems are closely related to the value of uncertainty in the modeling, which consists of the 
uncertainties of the individual devices composing the hybrid system, and uncertainties gen- 
erated by simultaneous use of the devices with differing forms of data representation. Pos- 
sible sources of such uncertainties were considered in [i, 2]. We will only note that un- 
certainties of the second type can be reduced markedly by rational division of the problem 
into analog and digital portions. On the other hand, it is necessary to consider the fact 
that highest efficiency is achieved with use of analog equipment when continuous operations 
are performed on functions of a single variable, and also when the Cauchy problem is solved 
for ordinary differential equations. 

One of the desirable applications of hybrid modeling is solution of converse problems 
in the extremal formulation [3], for which a large number of "digital" algorithms have been 
developed on the basis of iteration techniques for minimization of the mean square discrepan- 
cy. As a rule the most cumbersome part of such algorithms is the procedure for solving the 
thermal conductivity boundary problems and calculating the gradient of the discrepancy by 
solving the boundary problem for the conjugate variable. If integration of these problems is 
assigned to the analog portion of the hybrid computation system, a significant increase in 
speed of the iteration algorithms is possible. 

We will consider one approach to construction of hybrid modeling algorithms for such 
boundary problems using the following nonsteady state thermal conductivity problem as an ex- 
ample: 

OT 0 [~(T)OT ] O<x<b, to<t~tv, 
C ( T )  0--7-~ = 0----;- -~.~ ' (1) 

T(x ,  to)=q)(x) ,  O ~ x ~ b ,  (2) 

~ r  (0, t) - -  ~p~ (T) aT (0, t) : u~ (t), 
Ox (3) 

a~T(b, t) ..... ~ Z ( T )  OT(b, t) 
Ox = u~(t), (4 )  

where ~i, ~i are nonnegative numbers such that ~i + Bi >O, i = i, 2. 

Representing the time variable t by a set of discrete points t k equally spaced by an 
amount T, k=0, ~ , and approximating the time derivative by the expression aT/Ot~_(Fk 
--Th-1)/z , the problem of Eqs. (1)-(4) at time tk, k=1,1, can be written 
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OT(S ) ] T(k ~) - -Tk-1  O ~.(~) (x) O < x < b ,  (5) c (s~ (x) �9 . . . .  Ox T ] '  

Tk- ,  (X) = q~u(X), O ~ x < b ,  (6) 

aT~ ~) (0) = u~, 
% T~ ~) (0) - -  ~ t~) (0). O.~ (7) 

=,'r(f ) ( o ) -  ~.z (~) (b) aTi*) (b) uk 
ax (8) 

where s is the iteration number for the unknown profile Tk(x); %(x)=%[T(x)]; (](x)----C[T(x)] 

The spatial variable x remains continuous and is modeled by "machine" time in the ana- 
log portion of the hybrid computer system. 

It is obvious that such a discretization scheme is applicable for both linear and non- 
linear problems with a large number of nonlinear functions. Moreover, with regard to the ap- 
paratus required, a significantly smaller number of analog elements is required than in the 
method based on discretization of the spatial variable. 

Omitting the iteration number (s) and the time step number k, the problem of Eqs. (5)- 
(8) can be rewritten in the form of a two-point boundary problem for a second order differ- 
ential equation 

dx " ~ - -  q (x) T = f (x), (9) 

% T  (0) - -  ~1~, (0) dT (0) = tq, (I0) 
dx 

dT(b) = u2, ( i i )  

where q ~) = C (~/z; f (X) = --C (x) ~ (~/~. 

Thus, the original problem of Eqs. (1)-(4) has been reduced to successive solution at 
each k-th point in time of boundary problem (9)-(11). 

To construct a stable computation process we write two-point boundary Problem (9)-(11) 
in the form of a set of problems in Cauchy formulation. To do this we employ the factorlza- 
tion method of [2, 4], which consists of expanding the second order operator in first order 
operator, each of which is stable for a corresponding integration direction. 

Following this method, the operator of Eq. (9) 

dx - - q  

will be represented as a product of two operators: 

d] L = LxL~(T ) = W ' d x  dx ~1 T = [, (12) 

where the functions V, ~, ~ and ~ can be determined in the solution process. 

By comparing Eq. (12) with the original equation, after simple transformations and use 
of the expression ~ + n = i, in place of Eqs. (9)-(11) we can write the Cauchy problem for 
three first order equations: 
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d_~_. = _  n_L ~ 
dx ~. + q (1 - -  ~1)*, ~1 (0) = , % -i- Pl .... ( 1 3 )  

d_.__~y = ~]~ ~- (1 - -  "q)([-- qg), y(O) u~ , (14) 
dx k ~ + ~1 

d__~T = 1 [ r t T + y ] ,  T ( b ) =  u, II--~q(b)l+~,y(b) (15)  
dx X (I - -  n) a ,  - -  n (b)[cz~ + I%1 

In contrast to the equations presented in [4], the structure of differential equations 
(13)-(15) is independent of the form of boundary condition (i0) (of the quantities ~, and B,). 

Integration of Eq. (15) in the reverse direction leads to individual analog modeling of 
Eqs. (13), (14), and (15). In connection with this, provisions must be made for recall of the 
solutions D(x) and y(x). 

In order to avoid these difficulties, we will represent the solution of Eq. (15) as a 
sum of the solution of the corresponding homogeneous equation and a particular solution of 
the nonhomogeneous equation, i.e., 

dt -- Y exp -- N d~ T(x)  == T(b)exp _--  Z(1 --~1) Z(1 --~1) ~(I  --~1) d t  

o r  

T (x) (o) + _ _  YI dt . ( 1 6 )  ~1 dz- dt} / exp - -  i %(t rl) 
Y exp 

(T ~ (1 - -  o) o) ~ - - -  

Denoting by G(x) the solution of the homogeneous equation 

d_! = n - a ,  a(O) = 1, 
dr  Z(] - - 0 )  (17) 

and by Z(x) the solution of the equation 

dZ Z 
. . . .  ~ ,  z(o) = o ,  (18) 
dx )~(1 - -  ~1) 

in the interval [0, x], we may write the solution of Eq. (16) in the form 

T (x) = [T (0) - -  Z (x)l/G (x), 

or, with consideration of the fact that T(O) = T(b)G(b) + Z(b): 

T (x) ,= [T(b) O (b) + Z (b) - -  Z (x)]/G (x). (19)  

As a result, the solution of the two-point boundary problem (9)-(!i) can be obtained by 
analog modeling of the Cauchy problem for four first order differential equations: 

d~l __ rl__~ ~ 
- d x  ~ = ~ + q ( I  - -  TI) ~, !1 ( 0 )  = ~ 

oc~ + fh ' 
(20)  

dy 

dx 
ny + (1 - - n ) ( i - -  qy), y(o) = u~ ~ al + 61 ' (21) 

dO _ n o, G ( o ) =  I, 
dx ~, (I --- TI) (22) 

z a, z ( o ) =  o. 
dx = z(1 - -0)  (23) 
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Upon completion of integration the second relationship of Eq. (15) is used to calculate 
the quantity T(5), and Eq. (19) is used tocalculate T(x). Then a transition is accomplished 
to the solution of Eqs. (9)-(11) at the subsequent iteration or subsequent moment in time. 

To estimate its accuracy the algorithm considered was realized in digital form. Results 
of the calculations were compared to analytical solutions for the case of an infinite plate, 
as presented in [5]. The closeness of the numerical solution to the exact one was determined 
by the value of the step in the finite difference approximation of the time derivative and the 
step in the discrete representation of the solution T(x). 

NOTATION 

t, time; to, tp, beginning and end of time interval; T, discretization step in time; x, 
spatial variable; b~ thickness; T(x, T), temperature; C(T), volume heat capacity; l(T), thermal 
conductivity coefficient; u~(t), u2(t), bou~darwfunctions. 
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